16,943 research outputs found

    Performance analysis of electrical circuits /PANE/

    Get PDF
    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations

    Integrated Research Plan to Assess the Combined Effects of Space Radiation, Altered Gravity, and Isolation and Confinement on Crew Health and Performance: Problem Statement

    Get PDF
    Future crewed exploration missions to Mars could last up to three years and will expose astronauts to unprecedented environmental challenges. Challenges to the nervous system during these missions will include factors of: space radiation that can damage sensitive neurons in the central nervous system (CNS); isolation and confinement can affect cognition and behavior; and altered gravity that will change the astronauts perception of their environment and their spatial orientation, and will affect their coordination, balance, and locomotion. In the past, effects of spaceflight stressors have been characterized individually. However, long-term, simultaneous exposure to multiple stressors will produce a range of interrelated behavioral and biological effects that have the potential to adversely affect operationally relevant crew performance. These complex environmental challenges might interact synergistically and increase the overall risk to the health and performance of the astronaut. Therefore, NASAs Human Research Program (HRP) has directed an integrated approach to characterize and mitigate the risk to the CNS from simultaneous exposure to these multiple spaceflight factors. The proposed research strategy focuses on systematically evaluating the relationships among three existing research risks associated with spaceflight: Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation (CNS), Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (BMed), and Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (SM). NASAs HRP approach is intended to identify the magnitude and types of interactions as they affect behavior, especially as it relates to operationally relevant performance (e.g., performance that depends on reaction time, procedural memory, etc.). In order to appropriately characterize this risk of multiple spaceflight environmental stressors, there is a recognition of the need to leverage research approaches using appropriate animal models and behavioral constructs. Very little has been documented on the combined effects of altered gravity, space radiation, and other psychological and cognitive stressors on the CNS. Preliminary evidence from rodents suggest that a combination of a minimum of exposures to even two of three stressors of: simulated space radiation, simulated microgravity, and simulated isolation and confinement, have produced different and more pronounced biological and performance effects than exposure to these same stressors individually. Structural and functional changes to the CNS of rodents exposed to transdisciplinary combined stressors indicate that important processes related to information processing are likely altered including impairment of exploratory and risk taking behaviors, as well as executive function including learning, memory, and cognitive flexibility all of which may be linked to changes in related operational relevant performance. The fully integrated research plan outlines approaches to evaluate how combined, potentially synergistic, impacts of simultaneous exposures to spaceflight hazards will affect an astronauts CNS and their operationally relevant performance during future exploration missions, including missions to the Moon and Mars. The ultimate goals are to derive risk estimates for the combined, potentially synergistic, effects of the three major spaceflight hazards that will establish acceptable maximum decrement or change in a physiological or behavioral parameters during or after spaceflight, the acceptable limit of exposure to a spaceflight factor, and to evaluate strategies to mitigate any associated decrements in operationally relevant performance

    Difference in response reliability predicted by STRFs in the cochlear nuclei of barn owls

    Get PDF
    The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magnocellularis (NM). NA and NM receive input from bifurcating auditory nerve fibers and initiate processing pathways specialized in encoding interaural time (ITD) and level (ILD) differences, respectively. We found that NA neurons, though unable to accurately encode stimulus phase, lock more strongly to the stimulus envelope than NM units. The spectrotemporal receptive fields (STRFs) of NA neurons exhibit a pre-excitatory suppressive field. Using multilinear regression analysis and computational modeling, we show that this feature of STRFs can account for enhanced across-trial response reliability, by locking spikes to the stimulus envelope. Our findings indicate a dichotomy in envelope coding between the time and intensity processing pathways as early as the level of the cochlear nuclei. This allows the ILD processing pathway to encode envelope information with greater fidelity than the ITD processing pathway. Furthermore, we demonstrate that the properties of the neurons’ STRFs can be quantitatively related to spike timing reliability

    Negotiate or Litigate? Effects of WTO Judicial Delegation on U.S. Trade Politics

    Get PDF
    Goldstein and Steinberg argue that the World Trade Organization Appellate Body has been able to use its authority to engage in judicial lawmaking to reduce trade barriers in ways that would not otherwise have been possible through negotiation. This lawmaking authority was not the result of a purposeful delegation; rather, it was an unintended byproduct of the creation of an underspecified set of rules and procedures. There is nevertheless a high rate of compliance with Appellate Body decisions because decentralized enforcement can induce domestic importers to lobby for trade liberalization. In the US, this judicial lawmaking may also allow the President to achieve trade policies that are more liberal than those desired by Congress, if compliance can be achieved by a regulatory change or by sole Executive action

    A New Characterization of Fine Scale Diffusion on the Cell Membrane

    Get PDF
    We use a large single particle tracking data set to analyze the short time and small spatial scale motion of quantum dots labeling proteins in cell membranes. Our analysis focuses on the jumps which are the changes in the position of the quantum dots between frames in a movie of their motion. Previously we have shown that the directions of the jumps are uniformly distributed and the jump lengths can be characterized by a double power law distribution. Here we show that the jumps over a small number of time steps can be described by scalings of a {\em single} double power law distribution. This provides additional strong evidence that the double power law provides an accurate description of the fine scale motion. This more extensive analysis provides strong evidence that the double power law is a novel stable distribution for the motion. This analysis provides strong evidence that an earlier result that the motion can be modeled as diffusion in a space of fractional dimension roughly 3/2 is correct. The form of the power law distribution quantifies the excess of short jumps in the data and provides an accurate characterization of the fine scale diffusion and, in fact, this distribution gives an accurate description of the jump lengths up to a few hundred nanometers. Our results complement of the usual mean squared displacement analysis used to study diffusion at larger scales where the proteins are more likely to strongly interact with larger membrane structures.Comment: 18 pages, 7 figure

    The 3-D solar radioastronomy and the structure of the corona and the solar wind

    Get PDF
    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind

    An X-ray monitor for measurement of a titanium tritide target thickness

    Get PDF
    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy

    A proposed method for regeneration of neutron producing targets, within an accelerator, by ion sputtering techniques

    Get PDF
    Sputtering electrode system design for regeneration of targets within accelerato

    Access to uncombined titanium through an inhibiting film in sublimation pumping of deuterium

    Get PDF
    It was demonstrated, through a series of experiments, that it is possible (by the addition of a thin layer of titanium to an apparently occluded surface) to gain access to previously deposited sublayers of uncombined titanium in spite of the presence of an inhibiting film (such as an oxide) on the surface

    A high yield neutron target

    Get PDF
    Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target
    corecore